当前位置:首页 > TAG信息列表 > 八年级数学题计算题

八年级数学题计算题

八年级数学教案

八年级数学教案(通用13篇)

  作为一名为他人授业解惑的教育工作者,时常需要用到教案,教案有助于顺利而有效地开展教学活动。那么大家知道正规的教案是怎么写的吗?下面是小编为大家收集的八年级数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

  八年级数学教案篇1

  一、教学目标:

  1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

八年级数学教案

  2、能力目标:

  ①,在实践操作过程中,逐步探索图形之间的平移关系;

  ②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

  3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

  二、重点与难点:

  重点:图形连续变化的特点;

  难点:图形的划分。

  三、教学方法:

  讲练结合。使用多媒体课件辅助教学。

  四、教具准备:

  多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

  五、教学设计:

  创设情景,探究新知:

  (演示课件):教材上小狗的图案。提问:

  (1)这个图案有什么特点?

  (2)它可以通过什么“基本图案”,经过怎样的平移而形成?

  (3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

  小组讨论,派代表回答。(答案可以多种)

  让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

  看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

  小组讨论,派代表到台上给大家讲解。

  气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

  畅所欲言,互相补充。

  课堂小结:

  在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

  课堂练习:

  小组讨论。

  小组讨论完成。

  例子一定要和大家接触紧密、典型。

  答案不惟一,对于每种答案,教师都要给予充分的肯定。

  六、教学反思:

  本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

  八年级数学教案篇2

  【教学目标】

  知识目标:了解中心对称的概念,了解平行四边形是中心对称图形,掌握中心对称的性质。

  能力目标:灵活运用中心对称的性质,会作关于已知点对称的中心对称图形。

  情感目标:通过提问、讨论、动手操作等多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。

  【教学重点、难点】

  重点:中心对称图形的概念和性质。

  难点:范例中既有新概念,分析又要仔细、透彻,是教学的难点。

  关键:已知点a和点o,会作点aˊ,使点aˊ与点a关于点o成中心对称。

  【课前准备】

  叫一位剪纸爱好的学生,剪一幅类似书本第108页哪样的图案。

  【教学过程】

  一、复习

  回顾七下学过的轴对称变换、平移变换、旋转变换、相似变换。

  二、创设情境

  用剪好的图案,让学生欣赏。师:这剪纸有哪些变换?生:轴对称变换。师:指出对称轴。生:(能结合图案讲)。生:还有旋转变换。师:指出旋转中心、旋转的角度?生:90°、180°、270°。

  三、合作学习

  1、把图1、图2发给每个学生,先探索图1:同桌的两位同学,把两个正三角形重合,然后把上面的正三角形绕点o旋转180°,观察旋转180°前后原图形和像的位置情况,请学生说出发现什么?生(讨论后):等边三角形旋转180°后所得的像与原图形不重合。

  探索图形2:把两个平形四边形重合,然后把上面一个平形四边形绕点o旋转180°,学生动手后发现:平行四边形abcd旋转180°后所得的像与原图形重合。师:为什么重合?师:作适当解释或学生自己发现:∵oa=oc,∴点a绕点o旋转180°与点c重合。同理可得,点c绕点o旋转180°与点a重合。点b绕点o旋转180°与点d重合。点d绕点o旋转180°与点b重合。

  2、中心对称图形的概念:如果一个图形绕一个点旋转180°后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称(pointsymmetry)图形,这个点叫对称中心。

  师:等边三角形是中心对称图形吗?生:不是。

  3、想一想:等边三角形是轴对称图形吗?答:是轴对称图形。

  平形四边形是轴对称图形吗?答:不是轴对称图形。

  4、两个图形关于点o成中心对称的概念:如果一个图形绕着一个点o旋转180°后,能够和另外一个图形互相重合,我们就称这两个图形关于点o成中心对称。

  中心对称图形与两个图形成中心对称的不同点:前者是一个图形,后者是两个图形。

  相同点:都有旋转中心,旋转180°后都会重合。

  做一做:p109

  5、根据中心对称图形的定义,得出中心对称图形的性质:

  对称中心平分连结两个对称点的线段

  通过中心对称的概念,得到p109性质后,主要是理解与应用。如右图,若a、b关于点o的成中心对称,∴点o是a、b的对称中心。

  反之,已知点a、点o,作点b,使点a、b关于以o为对称中心的对称点。让学生练习,多数学生会做,若不会做,教师作适当的启发。

  做p106例2,让学生思考1~2分钟,然后师生共同解答。

  (p106)例2解:∵平行四边形是中心对称图形,o是对称中心,

  ef经过点o,分别交ab、cd于e、f。

  ∴点e、f是关于点o的对称点。

  ∴oe=of。

  四、应用新知,拓展提高

  例如图,已知△abc和点o,作△a′b′c′,使△a′b′c′与△abc关于点o成中心对称。

  分析:先让学生作点a关于以点o为对称中心的对称点aˊ,

  同理:作点b关于以点o为对称中心的对称点bˊ,

  作点c关于以点o为对称中心的对称点cˊ。

  ∴△aˊbˊcˊ与△abc关于点o成中心对称也会作。解:略。

  课内练习p110

  小结

  今天我们学习了些什么?

  1、中心对称图形的概念,两个图形成中心对称的概念,知道它们的相同点与不同点。

  2、会作中心对称图形,关键是会作点a关于以o为对称中心的对称点aˊ。

  3、我们已学过的中心对称图形有哪些?

  作业

  p110a组1、2、3、4,b组5、6必做c组7选做。

  八年级数学教案篇3

  学习目标:

  1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质.

  2、经历探索轴对称的性质的活动过程,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力.

  3、利用轴对称的基本性质解决实际问题。

  学习重点:灵活运用对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等等性质。

  学习难点:轴对称的性质的理解和拓展运用。

  学习过程:

  一、探索活动

  如右图所示,在纸上任意画一点a,把纸对折,用针在点a处穿孔,再把纸展开,并连接两针孔a、a.

  两针孔a、a和线段aa与折痕mn之间有什么关系?

  1、请同学们按要求画点、折纸、扎孔,仔细观察你所做的图形,然后研究:两针孔a、a与折痕mn之间有什么关系?线段aa与折痕mn之间又有什么关系呢?两针孔a、a,直线mn线段aa.

  2、那么直线mn为什么会垂直平分线段aa呢?

  3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(midpointperpendicular).

  例如,如图,对称轴mn就是对称点a、a连线(即线段aa)的垂直平分线.

  4.如图,在纸上再任画一点b,同样地,折纸、穿孔、展开,并连接ab、ab、bb.线段ab与ab有什么关系?线段bb与mn有什么关系?

  5.如图,再在纸上任画一点c,并仿照上面进行操作.

  (1)线段ac与ac有什么关系?bc与bc呢?线段cc与mn有什么关系?

  (2)a与a有什么关系?b与b呢?△abc与△abc有什么关系?为什么?

  (3)轴对称有哪些性质?

  6.轴对称的性质:

  (1)成轴对称的两个图形全等.

  (2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.

  二、例题讲解

  例1、(1)如图,a、b、c、d的对称点分别是,线段ac、ab的对应线段分别是,cd=,cba=,adc=.

  (2)连接af、be,则线段af、be有什么关系?并用测量的方法验证.

  (3)ae与bf平行吗?为什么?

  (4)ae与bf平行,能说明轴对称图形对称点的连线一定互相平行吗?

  (5)延长线段bc、fg,作直线ab、eg,你有什么发现吗?

  八年级数学教案篇4

  活动1、提出问题

  一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?

  问题:10+20是什么运算?

  活动2、探究活动

  下列3个小题怎样计算?

  问题:1)-还能继续往下合并吗?

  2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?

  二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。

  活动3

  练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)

  创设问题情景,引起学生思考。

  学生回答:这个运动场要准备(10+20)平方米的草皮。

  教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。

  我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。

  教师引导验证:

  ①设=,类比合并同类项或面积法;

  ②学生思考,得出先化简,再合并的解题思路

  ③先化简,再合并

  学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。

  教师巡视、指导,学生完成、交流,师生评价。

  提醒学生注意先化简成最简二次根式后再判断。

  八年级数学教案篇5

  一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2=得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。

  根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。

  通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。

  通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。

  (二)重点、难点

  一元二次方程根与系数的`关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

  (三)教学目标

  1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

  八年级数学教案篇6

  1、展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?

  2、思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)

  3、再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义、

  矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)、

  矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象、

  【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状、

  ①随着∠α的变化,两条对角线的长度分别是怎样变化的?

  ②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?

  操作,思考、交流、归纳后得到矩形的性质、

  矩形性质1矩形的四个角都是直角、

  矩形性质2矩形的对角线相等、

  如图,在矩形abcd中,ac、bd相交于点o,由性质2有ao=bo=co=do=ac=bd、因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半、

  例习题分析

  例1(教材p104例1)已知:如图,矩形abcd的两条对角线相交于点o,∠aob=60°,ab=4cm,求矩形对角线的长、

  分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△oab是等边三角形,因此对角线的长度可求、

  解:∵四边形abcd是矩形,

  ∴ac与bd相等且互相平分、

  ∴oa=ob、

  又∠aob=60°,

  ∴△oab是等边三角形、

  ∴矩形的对角线长ac=bd=2oa=2×4=8(cm)、

  例2(补充)已知:如图,矩形abcd,ab长8cm,对角线比ad边长4cm、求ad的长及点a到bd的距离ae的长、

  分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法

  八年级数学教案篇7

  一、学习目标

  1、使学生了解运用公式法分解因式的意义;

  2、使学生掌握用平方差公式分解因式

  二、重点难点

  重点:掌握运用平方差公式分解因式。

  难点:将单项式化为平方形式,再用平方差公式分解因式。

  学习方法:归纳、概括、总结。

  三、合作学习

  创设问题情境,引入新课

  在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

  如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

  1、请看乘法公式

  左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

  利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

  a2—b2=(a+b)(a—b)

  2、公式讲解

  如x2—16

  =(x)2—42

  =(x+4)(x—4)。

  9m2—4n2

  =(3m)2—(2n)2

  =(3m+2n)(3m—2n)。

  四、精讲精练

  例1、把下列各式分解因式:

  (1)25—16x2;(2)9a2—b2。

  例2、把下列各式分解因式:

  (1)9(m+n)2—(m—n)2;(2)2x3—8x。

  补充例题:判断下列分解因式是否正确。

  (1)(a+b)2—c2=a2+2ab+b2—c2。

  (2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

  五、课堂练习

  教科书练习。

  六、作业

  1、教科书习题。

  2、分解因式:x4—16x3—4x4x2—(y—z)2。

  3、若x2—y2=30,x—y=—5求x+y。

  八年级数学教案篇8

  一、学习目标

  1、多项式除以单项式的运算法则及其应用。

  2、多项式除以单项式的运算算理。

  二、重点难点

  重点:多项式除以单项式的运算法则及其应用。

  难点:探索多项式与单项式相除的运算法则的过程。

  三、合作学习

  (一)回顾单项式除以单项式法则

  (二)学生动手,探究新课

  1、计算下列各式:

  (1)(am+bm)÷m;

  (2)(a2+ab)÷a;

  (3)(4x2y+2xy2)÷2xy。

  2、提问:

  ①说说你是怎样计算的;

  ②还有什么发现吗?

  (三)总结法则

  1、多项式除以单项式:先把这个多项式的每一项除以xxxxxxxxxxx,再把所得的商xxxxxx

  2、本质:把多项式除以单项式转化成xxxxxxxxxxxxxx

  四、精讲精练

  例:(1)(12a3—6a2+3a)÷3a;

  (2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

  (3)[(x+y)2—y(2x+y)—8x]÷2x;

  (4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

  随堂练习:教科书练习。

  五、小结

  1、单项式的除法法则

  2、应用单项式除法法则应注意:

  a、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

  b、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

  c、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

  d、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;

  e、多项式除以单项式法则。

  八年级数学教案篇9

  教学目标:

  1、知道负整数指数幂=(a≠0,n是正整数)、

  2、掌握整数指数幂的运算性质、

  3、会用科学计数法表示小于1的数、

  教学重点:

  掌握整数指数幂的运算性质。

  难点:

  会用科学计数法表示小于1的数。

  情感态度与价值观:

  通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题、

  教学过程:

  一、课堂引入

  1、回忆正整数指数幂的运算性质:

  (1)同底数的幂的乘法:am?an=am+n(m,n是正整数);

  (2)幂的乘方:(am)n=amn(m,n是正整数);

  (3)积的乘方:(ab)n=anbn(n是正整数);

  (4)同底数的幂的除法:am÷an=am?n(a≠0,m,n是正整数,m>n);

  (5)商的乘方:()n=(n是正整数);

  2、回忆0指数幂的规定,即当a≠0时,a0=1、

  3、你还记得1纳米=10?9米,即1纳米=米吗?

  4、计算当a≠0时,a3÷a5===,另一方面,如果把正整数指数幂的运算性质am÷an=am?n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。

  二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an=am+n(m,n是整数)这条性质也是成立的、

  三、科学记数法:

  我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0。000012=1。2×10?即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0。012=1。2×10?2,0。0012=1。2×10?3,0。00012=1。2×10?4,以此发现其中的规律,从而有0。0000000012=1。2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1。

  八年级数学教案篇10

  一、教学目标:

  1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

  2、会求一组数据的极差.

  二、重点、难点和难点的突破方法

  1、重点:会求一组数据的极差.

  2、难点:本节课内容较容易接受,不存在难点、

  三、课堂引入:

  下表显示的是上海2001年2月下旬和2002年同期的每日最高气温,如何对这两段时间的气温进行比较呢?

  从表中你能得到哪些信息?

  比较两段时间气温的高低,求平均气温是一种常用的方法、

  经计算可以看出,对于2月下旬的这段时间而言,2001年和2002年上海地区的平均气温相等,都是12度、

  这是不是说,两个时段的气温情况没有什么差异呢?

  根据两段时间的气温情况可绘成的折线图、

  观察一下,它们有区别吗?说说你观察得到的结果、

  用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围、用这种方法得到的差称为极差(range)、

  四、例习题分析

  本节课在教材中没有相应的例题,教材p152习题分析

  问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。

  八年级数学教案篇11

  一、教材分析

  1、特点与地位:重点中的重点。

  本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。

  2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:

  (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

  (2)难点:求解最短路径算法的程序实现。

  3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

  二、教学目标分析

  1、知识目标:掌握最短路径概念、能够求解最短路径。

  2、能力目标:

  (1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。

  (2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。

  3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。

  三、教法分析

  课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。

  四、学法指导

  1、课前上次课结课时给学生布置任务,使其有针对性的预习。

  2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。

  3、课后给学生布置同类型任务,加强练习。

  五、教学过程分析

  (一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。

  教学方法及注意事项:

  (1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。

  (2)提示学生“温故而知新”,养成良好的学习习惯。

  (二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:

  (1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。

  (2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。

  (三)讲授新课(25~30分钟)

  1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。

  (1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:

  ①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。

  ②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。

  ③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。

  ④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。

  教学方法及注意事项:

  ①启发式教学,如何实现按路径长度递增产生最短路径?

  ②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。

  (四)课堂小结(3~5分钟)

  1、明确本节课重点

  2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?

  (五)布置作业

  1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。

  六、教学特色

  以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。

  八年级数学教案篇12

  教学目标:

  1、知道负整数指数幂=(a≠0,n是正整数)、

  2、掌握整数指数幂的运算性质、

  3、会用科学计数法表示小于1的数、

  教学重点:

  掌握整数指数幂的运算性质。

  难点:

  会用科学计数法表示小于1的数。

  情感态度与价值观:

  通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题、

  教学过程:

  一、课堂引入

  1、回忆正整数指数幂的运算性质:

  (1)同底数的幂的乘法:am?an=am+n(m,n是正整数);

  (2)幂的乘方:(am)n=amn(m,n是正整数);

  (3)积的乘方:(ab)n=anbn(n是正整数);

  (4)同底数的幂的除法:am÷an=am?n(a≠0,m,n是正整数,m>n);

  (5)商的乘方:()n=(n是正整数);

  2、回忆0指数幂的规定,即当a≠0时,a0=1、

  3、你还记得1纳米=10?9米,即1纳米=米吗?

  4、计算当a≠0时,a3÷a5===,另一方面,如果把正整数指数幂的运算性质am÷an=am?n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。

  二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an=am+n(m,n是整数)这条性质也是成立的、

  三、科学记数法:

  我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012=1.2×10?5.即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0.012=1.2×10?2,0.0012=1.2×10?3,0.00012=1.2×10?4,以此发现其中的规律,从而有0.0000000012=1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

  八年级数学教案篇13

  一、学习目标及重、难点:

  1、了解方差的定义和计算公式。

  2、理解方差概念的产生和形成的过程。

  3、会用方差计算公式来比较两组数据的波动大小。

  重点:方差产生的必要性和应用方差公式解决实际问题。

  难点:理解方差公式

  二、自主学习:

  (一)知识我先懂:

  方差:设有n个数据,各数据与它们的平均数的差的平方分别是

  我们用它们的平均数,表示这组数据的方差:即用

  来表示。

  给力小贴士:方差越小说明这组数据越。波动性越。

  (二)自主检测小练习:

  1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

  2、甲、乙两组数据如下:

  甲组:1091181213107;

  乙组:7891011121112.

  分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.

  三、新课讲解:

  引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)

  甲:9、10、10、13、7、13、10、8、11、8;

  乙:8、13、12、11、10、12、7、7、10、10;

  问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数:=)

  (2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了)

  归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别是

  我们用它们的平均数,表示这组数据的方差:即用来表示。

  (一)例题讲解:

  例1、段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、

  测试次数第1次第2次第3次第4次第5次

  段巍1314131213

  金志强1013161412

  给力提示:先求平均数,在利用公式求解方差。

  (二)小试身手

  1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

  甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7

  经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定

  去参加比赛。

  1、求下列数据的众数:

  (1)3,2,5,3,1,2,3(2)5,2,1,5,3,5,2,2

  2、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?

  四、课堂小结

  方差公式:

  给力提示:方差越小说明这组数据越。波动性越。

  每课一首诗:求方差,有公式;先平均,再求差;

  求平方,再平均;所得数,是方差。

  五、课堂检测:

  1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

  小爽10.810.911.010.711.111.110.811.010.710.9

  小兵10.910.910.810.811.010.910.811.110.910.8

  如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

  六、课后作业:

  必做题:教材141页练习1、2选做题:练习册对应部分习题

  七、学习小札记:

  写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!


甘肃旅游之家 姗姗优选

  • 关注微信关注微信

猜你喜欢

微信公众号